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Abstract-- A fast differential equation approach for the DOK model

has been extented to the CMH model. Also, a cobweb technique for

calculating the CMH model is also presented. The two techniques are

contrasted from the point of view of fle.vdbility and computation lime.

INTRODUCTION

The CMH model is a moving Preisach model in which the

reversible component of the magnetization is state-dependent.

Unlike the DOK model, it accurately predicts the variation in

zero-field susceptibility with magnetization. It has not been

used much in the past because the DOK model, which is

much easier to calculate, is accurate enough in most cases to

describe the magnetization process and a fast simple

algorithm was not available.

This paper presents two techniques, the differential

equation method [1] and the cobweb method [2], which have

been previously presented for the DOK model, for calculating
the CMH model and contrasts them. In addition an

identification strategy for the CMH model will be presented.

The speed increase of the two techniques results from

computing the magnetization by simply adding the change in

magnetization due to any change in applied field to the

previously computed magnetization, instead of integrating

over the Preisach plane at each step of the computation.

The differential equation method calculates the

susceptibility in closed form for Gaussian Preisach functions.

This limits the technique to simple magnetization

distributions that are integrable. However, it is a variable

step-size technique that is not limited by the discretization

error in the magnetization and distributes pseudo-hysterons

over the two hysterons switching at the same time, leading to

a smooth magnetization curve. Changing the error criterion

during a calculation is difficult in the midst of a calculation.

THE DIFFERENTIAL EQUATION METHOD

We assume that the Preisach function of the CMH model

is the standard moving model of the form
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We compute the susceptibility using
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where Z1 is the susceptibhity of the irreversible component,

XR is the susceptibility of the reversible component and S is

the squareness of the material. In the CMH model. XR is given

by
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In the following analysis, we will use

m R =a+f(H)+a_f(H), (4)
where

f(n)= 1-e -_ . (5)

It can be shown that

a± = Jjexp(_ 7hi)p(h_,hi)dh, dh i. (6)
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From [1] the irreversible susceptibility for increasing

operative field is given by
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and for decreasing operative field is given by
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Using (1) and (6), we can derive da./dh for increasing

operative field as
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and for decreasing operative field as
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Similarly, we can derive da/dh for increasing operative
field as
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and for decreasing field as
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The parameters X, _, and _ are the same as in [I]. The

reversible susceptibility is given by

a'. f(H )-a'_f(H )+ (a+f'(H )-a_f(- H ))
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The sum of (7) and (13) gives the total susceptibility and then

the next magnetization can be computed by

M(H + ,5I"t )= m(H )+ 2",5tl. (14)

There are several problems with this technique. The first

problem is that the stability of this method requires small step

in H under certain conditions. The second problem is that

when the reversible magnetization is close to saturation the

irreversible magnetization can get to be very large due to the

exponential increase of fill). This can be overcome by setting

the magnetization to saturation when it gets close to

saturation. However, this puts a glitch in the solution which

may be undesirable.

THE COBWEB METHOD

Similarly, the operative co-ordinates h, and hk for a+ are

given by

(16)

hi = -7.'o',: +a, cosR_/- 2 log0 - p)

and for a. the operative co-ordinates are given by

h_ =h, +a, sinai/- 21og(l-'p)
(I7)

"or cosO_/-2log(I p)h i = _o',: ,

The contribution of any single hysteron to the total a÷ or a. is

equal to exp( _ cr 2 /2 )/mn.

MODEL PARAMETER IDENTIFICATION

An identification method will be presented for the CMH
model which is a modification of the DOK identification

algorithm [3]. All parameters are computed in essentially the

same way as in the DOK model except for 7. In the DOK

model 7 is the reversible zero-field susceptibility that is

independent of the magnetic state. Since the reversible

susceptibility for zero field is now a function of

magnetization. Thus, we recommend identification of _/ by

fitting the descending major loop near positive saturation.

DISCUSSION AND CONCLUSION

In previous models, the squareness S and were the same

for the entire distribution. This made it difficult to satisfy the

crossover condition for particles with large hi. In the cobweb

model it is possible to decrease S or for particles with large hi.

We have presented two fast techniques for computing the

magnetization expected for the CMH model, both of which

produce the same results and are fast. We will present results

for both methods of computation.

The cobweb grid in Preisach plane was developed to

achieve higher speed and accuracy of numerical computation

for irreversible magnetization [2]. Here, the CMH model is

implemented based on the cobweb grid systems for

irreversible magnetization and a. and a variables for the

reversible magnetization.

The cobweb method distributes hysterons uniformly in 8

in the interval (0,2x) and in p in (0,1) on m x n grid. The

relationship between these co-ordinates and the operative co-

ordinates h, and h k for irreversible magnetization are given by

h k = hk + O'_ sin 04- 2 log o - p)
(151

h i = cr i cosS-J- 2 log O -/9)

The contribution of any single hysteron to the total moment is

equal to that of all the others and is equal to Ms/ran. Thus, the

maximum error in M is half that and by choosing mn large

enough the error can be made arbitrarily small
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